Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy.

نویسندگان

  • Stephen R Delwiche
  • Robert A Graybosch
  • Paul St Amand
  • Guihua Bai
چکیده

Wheat (Triticum aestivum L.) breeding programs are currently developing varieties that are free of amylose (waxy wheat), as well as genetically intermediate (partial waxy) types. Successful introduction of waxy wheat varieties into commerce is predicated on a rapid methodology at the commodity point of sale that can test for the waxy condition. Near-infrared (NIR) reflectance spectroscopy, one such technology, was applied to a diverse set of hard winter (hexaploid) wheat breeders' lines representing all eight genotypic combinations of alleles at the wx-A1, wx-B1, and wx-D1 loci. These loci encode granule-bound starch synthase, the enzyme responsible for amylose synthesis. Linear discriminant analysis of principal components scores 1-4 was successful in identifying the fully waxy samples at typically greater than 90% accuracy; however, accuracy was reduced for partial and wild-type genotypes. It is suggested that the spectral sensitivity to waxiness is due to (1) the lipid-amylose complex which diminishes with waxiness, (2) physical differences in endosperm that affect light scatter, or (3) changes in starch crystallinity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Registration of Common Wheat Germplasm with Mutations in SBEII Genes Conferring Increased Grain Amylose and Resistant Starch Content

Starch present in the endosperm of common wheat (Triticum aestivum L.) grains is an important source of carbohydrates worldwide. Starches with a greater proportion of amylose have increased levels of resistant starch, a dietary fiber that can provide human health benefits. Induced mutations in STARCH BRANCHING ENZYME II (SBEII) genes in wheat are associated with increased amylose and resistant ...

متن کامل

Spontaneous and Divergent Hexaploid Triticales Derived from Common Wheat × Rye by Complete Elimination of D-Genome Chromosomes

BACKGROUND Hexaploid triticale could be either synthesized by crossing tetraploid wheat with rye, or developed by crossing hexaploid wheat with a hexaploid triticale or an octoploid triticale. METHODOLOGY/PRINCIPAL FINDINGS Here two hexaploid triticales with great morphologic divergence derived from common wheat cultivar M8003 (Triticum aestivum L.) × Austrian rye (Secale cereale L.) were rep...

متن کامل

A Simple and Efficient Approach to Elucidate Genomic Contribution of Transcripts to a Target Gene in Polyploids: The Case of Hexaploid Wheat (Triticum aestivum L.)

Common wheat (Triticum aestivum L.) is one of the most economically important crops in the world, however, gene functional studies in this crop have been lagging mainly due to the complexity of its polyploid genome, which is derived through two rounds of intergeneric hybridization events that led to the presence of six copies for each gene. Elucidating the transcript contribution of each genome...

متن کامل

Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome.

More than 50 leaf rust resistance (Lr) genes against the fungal pathogen Puccinia triticina have been identified in the wheat gene pool, and a large number of them have been extensively used in breeding. Of the 50 Lr genes, all are known only from their phenotype and/or map position except for Lr21, which was cloned recently. For many years, the problems of molecular work in the large (1.6 x 10...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of agricultural and food chemistry

دوره 59 8  شماره 

صفحات  -

تاریخ انتشار 2011